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Abstract. The time varying relativistic Stern-Gerlach force, which acts over a charged particle 
endowed with a magnetic moment, is deduced from the Dirac Hamiltonian finding its coincidence 
with the classical expression. Possible drawbacks related to the Heisenberg uncertainty principle are 
discussed. 

THE FORMALISM OF THE STERN-GERLACH INTERACTION 

The effect of the Stern-Gerlach (SG) force over a charged particle endowed with a 
magnetic moment fi* has been evaluated mainly in the perspective of achieving the 
separation of the two polarization states of fermion beams, either by acting on the 
trajectory slopes[ 1][2] while crossing constant magnetic gradient, or by exploiting the 
energy differences [3][4] related to the interaction between magnetic moments and 
electromagnetic fields of a suitable rf cavity. The latter system has also been proposed 
[5] as a polarimeter. In the particle rest frame (PRF), where all the quantities are labelled 
with a prime, this force takes the expression 

& = V/@* 2) = &@* .J')f+ +(fi* .J')F+ &(fi* .2p, (1) 

which when boosted back to the laboratory fi-ame (LAB) becomes 
-+ 

f SG- - '"('*.~')~+'"(#G*.3')i,+d y J x  p Y ai (#G* .3')2, (2) 

where p and y are the usual relativistic parameters, and the z-axis has been chosen 
parallel to the particle velocity 3. Bearing in mind the relation between 2' and the fields 
2, .,? in the laboratory frame, the longitudinal component of the SG force (2) becomes 

(3) 
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It is relevant to point out that Eq. (3) can be deduced from the quantum relativistic 
theory of the spin-f charged particle (Dirac). Indeed, if we start from the Hamiltonian 

H = e$ +c&. (3- e i )  + yomc2, 
with the Dirac’s matrices 

(7) 

where Zi is a vector whose components are the Pauli’s matrices 

0 -i 1 0  0 1  1 0  

Here we have chosen the y-axis as the one parallel to the main magnetic field. By means 
of standard steps it is straightforward to derive the nonrelativistic expression of the 
Hamiltonian exhibiting the SG interaction with the “normal” magnetic moment 

-t A = e@ + &@ - e i ) 2  - E(Zi. B)  (10) 
which coincides with the Pauli equation. In particular this equation is valid in the PRE 

anomalous magnetic moment, which gives rise to a factor 1 + a  = g/2, thus obtaining 
At this stage we must add to the Stern-Gerlach energy the contribution from the 

-+ 

-ge’la.g=-ji*.B 2 2n1 with ,ii*=g&g. (1 1) 
In order to obtain the z-component of the SG force in the Laboratory frame, we must 

boost the whole Pauli term of Eq. (10) by using the unitary operator U [6] in the Hilbert 
space, which expresses the Lorentz transformation: 

U-’ [ g4 4711 ( yo 8 3)] U = g$S-’ ( “/o~x)SBx + S-’ (I/~O,)SB, + S-’ (‘~oc&)SB, (12) 

where 

S = exp [yo (1. 9);] = I4 cosh !j + 

m- 
(1 3) 

(14) * v ‘  v = m, coshu = 1 - y (Lorentz factor), and p = f .  

Here I4 is the 4 x 4 identity matrix. From the algebraic properties of the y and 0 matrices, 
we obtain (extending the Zi to 4 x 4 matrices with the 2 x 2 Pauli matrices repeated in 
the diagonal blocks) 
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At this stage it is straightforward to deduce the expectation values of the SG force 
in the LAB system with a deked  spin component (along the y-axis in our case) via the 
expectation values of the Pauli interaction term and Lorentz transformation of the proper 
force: 

In fact, only Eq. (1 6)  gives a noli null result, while both Eqs. (1 5)  and (17) yield a null 
contribution to the expectation values quoted above, because of orthogonality of the two 
spin states s = 2 ~ 1  and the properties of the IS matrices. 

It should be noted that the electric field ,!? and the time derivative appearing in Eq. 
(1 9) are due to the well known Lorentz transformations 

, 

It is interesting to underline that Eq. (1 9) coincides with the Eq. (3) if we keep in mind 
that only a single spin component can be measured. 

QUANTUM LIMITATIONS 

Let us now consider the effect of a static quadrupole field B' = (Gy, Gx, 0)  on the 
trajectory slopes. Particles with spins parallel to the y-axis undergo a horizontal impulse, 
or kick, tip, = p* GlQ/pc (EQ = quadrupole length) which generates two slope variations 

qh = = ztd ( p  = particle momentum) 

Hence particles with opposite spin states will have, on the long run, separate trajectories. 
Eq. (23) shows the method is not viable at high energy since I q I fades off with the growth 

On the contrary, in the case of the energy exchange between particles and the electro- 
magnetic field of a rf cavity, both Eqs. (4) and ( 5 )  exhibit a factor y2 which is also present 
in the expression of the energy gained (or lost) during a cavity crossing. Let us recall the 
typical example [4] dealing with a rectangular cavity excited in its TE,, , mode: 

(23) 
I** Ge 

of y. 

A& = f2?,~*B,  (24) 

788 



where Bo is the cavity’s peak magnetic field. The energy variation (24) makes the beam’s 
momentum spread vary by the amount 

which implies that the energy separation between particles with opposite spin states is 
more and more effective as the beam’s energy increases. 

We return to the case of the nonrelativistic transverse kick [7], considering the classi- 
cal betatron oscillation of a particle, circulating in a ring, as the motion of the center of 
its quantum wave packet which represents [8],[9] the wave-fullction of the “correspond- 
ing state”. Moreover, when the particle crosses a focusing quadrupole, we can treat its 
motion with the quantum harmonic oscillator thus obtaining the following expressions 
for the momentum and position uncertainties: 

Axo = d x  lhiz and Apo = &QEZ (26) 

As soon as the particle leaves the focusing region and travels along either a free space or 
a defocusing quadrupole, no discrete energy levels exist anymore and a pure continuous 
spectrum will appear; this implies a dilation of the wave-packet size, according to the 
relation 

where z is the space covered by the particle outside the focusing quadrupole and il = 
h/mc is the Compton wave length of the particle. 

On the other hand, the momentum uncertainty (26) generates an angular deflection 
x ’=% mv which gives rise to a spatial increment Axq = $$z over a length z. Comparing , 
this growth to the size (27) of the swollen wave-packet, we obtain: 

(28) 
Ax,, - Ap 2n1vhQ - 2ApQAxo - - . - d z -  - f i  = 2  

Axwp mv liz - 

If we set, for instance, G = 10 Tm-’ and v = 3.095 x lo7 ms-’ or /3 = 0.103 (5 MeV 
protons), from Eq. (26) we obtain Axo = 1.93 x , while for z = 10 m Eq. (27) 
yields Axwp = 5.37 x m. With all these in mind, we may fhd, for L = 1 m, 
6px = 4.56 x kgrns-’ or 6pxAx, 141 Js << h N Js. However, the 
random nature of the quantum uncertainty does not allow its growth to macroscopic size; 
on the contrary, the coherence of our classical kicks permits overcoming the uncertainty 
limit and realizing a macroscopic effect by addition. In our example, the small spatial 
increments 6x = ( 6 p x / p ) z  = 8.80 x m will sum up till reaching the value of Ax, 
after about lo6 revolutions. 

As far as the energy gaidloss is concerned, the situation is simpler and more straight- 
foiward. In fact in the relativistic case, with AE from Eq. (24), At being of size 
$ 7 ~  lo-’’ s @.e. a half period of 3 GHZ) and Bo = 0.1 T, we obtain: 

(29) 
x Js for electrons, 

p2.82 x Js forprotons. 
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From Eq. (29) it is easy to infer that, in the case of protons, the uncertainty principle 
constraints are overwhelmed with y 2 19 or y 2 48.5 depending whether we have 
chosen tt or h as limiting quantity. As far as electrons are concerned, even nonrelativistic 
particles skip these constraints. 

We have demonstrated the possibility of detecting sizeable effects of the SG force 
over a free fermion. We have made it clear that, even in the example of the transverse 
impulse hidden in the uncertainty blur, this kick can repeat turn after turn giving thus rise 
to a measurable effect, provided that reasonable operating conditions are settled. Energy 
exchanges between the particle's kinetic energy and the cavity's electromagnetic fields 
can be detected with an efficiency proportional to y. 

CONCLUDING REMARKS 

Under the hypothesis that the PRF is inertial we proved the equivalence of the classical 
and quantum mechanical relativistic SG force. We are aware that such an issue is an 
approximation because the actual motion of the test particle is neither straight nor 
uniform in any real accelerator. However, the time spent inside the cavities is much 
shorter than the revolution period and this fully justifies our approximation. 

Another relevant application to consider is the proposal of constructing an absolute 
polarimeter. To be more specific, this might consist of a passive rf cavity, placed along 
the beam axis, which should detect a total energy transfer of the order of 

AU N 2NPp*B0 (3 0)  

where N is the number of particles belonging to a bunch train, P is the beam polarization 
and Bo is now the self-field created by the crossing particles. 

Finally, it should be noted that the continuous Stern-Gerlach effect has been recently 
observed for an electron in an atomic ion[ lo]. 
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